QUANTUM PHOTONICS BY SERENDIPITY

Some news from the PhD defense of Caterina Taballione.

Author: IR. W.R. van der Veen for Univeristy of Twente

A photonic chip with no less than 128 tunable components on it, proves to be a true ‘Swiss army knife’ with a variety of applications. During her research on measuring light wavelengths using this photonic chip, Caterina Taballione of the University of Twente came across yet another application serendipitously: by sending single photons through the system in stead of continuous light, the optical components can perform quantum operations as well. The same chip works as a photonic quantum processor.

Manipulating light on a chip is now possible on a very advanced level, especially using combinations of materials. It is now possible to build optical waveguides with very low losses, using silicon nitride; or very narrow laser light sources using indium phosphide. The chip Caterina Taballione is presenting in her thesis, exists of many components that can either split or combine the light in and from separate channels like in a rail yard. It also has ring-shaped resonators that can work as a filter. The strength lies in the fact that the components can be controlled from the outside, making the chip flexible and programmable. And all this, not only in a classical approach but also in quantum photonics, as is one of the unexpected outcomes. This already led to a new company called QuiX.

Read more: https://www.utwente.nl/en/news/!/2019/7/249318/quantum-photonics-by-serendipity

Previous

Next